(define (cadr s) (car (cdr s))) (define (caddr s) (car (cdr (cdr s)))) ; derive returns the derivative of EXPR with respect to VAR (define (derive expr var) (cond ((number? expr) 0) ((variable? expr) (if (same-variable? expr var) 1 0)) ((sum? expr) (derive-sum expr var)) ((product? expr) (derive-product expr var)) ((exp? expr) (derive-exp expr var)) (else 'Error))) ; Variables are represented as symbols (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2))) ; Numbers are compared with = (define (=number? expr num) (and (number? expr) (= expr num))) ; Sums are represented as lists that start with +. (define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) (else (list '+ a1 a2)))) (define (sum? x) (and (list? x) (eq? (car x) '+))) (define (first-operand s) (cadr s)) (define (second-operand s) (caddr s)) ; Products are represented as lists that start with *. (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list '* m1 m2)))) (define (product? x) (and (list? x) (eq? (car x) '*))) ; You can access the operands from the expressions with ; first-operand and second-operand (define (first-operand p) (cadr p)) (define (second-operand p) (caddr p)) (define (derive-sum expr var) (make-sum (derive (first-operand expr) var) (derive (second-operand expr) var)) ) (define (derive-product expr var) (make-sum (make-product (derive (first-operand expr) var) (second-operand expr) ) (make-product (derive (second-operand expr) var) (first-operand expr) ) ) ) ; Exponentiations are represented as lists that start with ^. (define (make-exp base exponent) (define (exp x a) (cond ( (or (= 1 x) (= 0 a)) 1) (else (* x (exp x (- a 1)))) ) ) (cond ((=number? exponent 1) base) ((or (=number? exponent 0) (=number? base 1)) 1) ((and (number? base) (number? exponent)) (exp base exponent)) (else (list '^ base exponent))) ) (define (exp? exp) (and (list? exp) (eq? '^ (car exp))) ) (define x^2 (make-exp 'x 2)) (define x^3 (make-exp 'x 3)) (define (derive-exp exp var) (make-product (second-operand exp) (make-exp (first-operand exp) (- (second-operand exp) 1))) )